Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
PeerJ ; 12: e17149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560452

RESUMO

Animal welfare is the state of an animal's body and mind and the level to which its requirements are satisfied. Animal welfare is affected by human decisions and actions. Numerous decisions concerning animals are driven by human desires to enhance their own lives, and some of these decisions may be influenced by self-interest or a strong emphasis on economic factors. How to assess the welfare state of animals is a central issue in animal welfare science. Two critical questions can be used to address animal welfare: first, is the animal healthy, and second, does the animal have what it needs? Both of these questions can potentially be answered using the study of animal behavior. The development of behavioral methodologies is crucial for evaluating welfare in contexts where concern for animal welfare is often highest, such as on intensive modern farms and sites where working animals are used. Herein, we discuss animal welfare by focusing on some of its major concepts and explanations. Later, to illustrate key aspects of animal welfare, we chose to examine the information that is available for some 'neglected' livestock species, which are commercially important on a global basis and found in large numbers: buffaloes (Bubalus bubalis), camels (Camelus dromedarius), donkeys (Equus asinus), mules (Equus asinus × Equus caballus), and lumpfish (Cyclopterus lumpus). We chose these species because there are major ongoing concerns about their welfare, and more research is required to help solve the various problems. Overall, there are strong imbalances in terms of the species that are usually studied in terms of animal welfare research, and we call for greater attention to those that have traditionally been neglected.


Assuntos
Bison , Equidae , Humanos , Animais , Cavalos , Comportamento Animal , Bem-Estar do Animal , Peixes , Búfalos
2.
J Anim Ecol ; 93(4): 447-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348546

RESUMO

Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.


Assuntos
Coiotes , Cervos , Animais , Coelhos , Cervos/fisiologia , Coiotes/fisiologia , Ecossistema , Comportamento Predatório/fisiologia , Equidae
3.
Heliyon ; 10(3): e25560, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327457

RESUMO

While the passive transfer of immunity in horse and donkey foals has been extensively studied, there is limited information for mule foals. Immunoglobulin type G (IgG) and serum total protein concentration (TP) were assessed at different sampling times to evaluate the correlation between serum radial immunodiffusion (SRID) with electrophoresis, refractometry, and dry chemistry analyzer (Biuret), and to estimate serum IgG concentrations using serum TP in mule foals. We analyzed a total of 30 samples collected at birth, and at 6, 12, 24, and 48 h of life from 6 mule foals by SRID, electrophoresis TP, biuret TP, and refractometry TP. The SRID IgG concentration significantly increased from birth until T6 (p < 0.001). Serum TP analyzed with refractometry revealed differences between T0 and T12, T24 and T48 (p < 0.05), while a significant difference was observed with the biuret method between T0 and all the other sampling times (p < 0.001). A strong correlation was found between IgG SRID and biuret TP (r = 0.69, p < 0.001), and a good correlation existed between IgG SRID, refractometry TP, and electrophoresis TP (r = 0.44, p < 0.01 and r = 0.39, p < 0.05, respectively). All methods can be used to estimate the passive transfer of immunity in mule foals. TP refractometry and biuret TP values can be used to determine serum IgG concentrations in the blood of mule foals on their first day of life through the application of a specific equation.

4.
Emerg Infect Dis ; 30(2): 354-357, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270133

RESUMO

To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.


Assuntos
COVID-19 , Cervos , Animais , COVID-19/veterinária , SARS-CoV-2 , Equidae
5.
Ecology ; 105(4): e4238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212148

RESUMO

Growing evidence supports the hypothesis that temperate herbivores surf the green wave of emerging plants during spring migration. Despite the importance of autumn migration, few studies have conceptualized resource tracking of temperate herbivores during this critical season. We adapted the frost wave hypothesis (FWH), which posits that animals pace their autumn migration to reduce exposure to snow but increase acquisition of forage. We tested the FWH in a population of mule deer in Wyoming, USA by tracking the autumn migrations of n = 163 mule deer that moved 15-288 km from summer to winter range. Migrating deer experienced similar amounts of snow but 1.4-2.1 times more residual forage than if they had naïve knowledge of when or how fast to migrate. Importantly, deer balanced exposure to snow and forage in a spatial manner. At the fine scale, deer avoided snow near their mountainous summer ranges and became more risk prone to snow near winter range. Aligning with their higher tolerance of snow and lingering behavior to acquire residual forage, deer increased stopover use by 1 ± 1 day (95% CI) day for every 10% of their migration completed. Our findings support the prediction that mule deer pace their autumn migration with the onset of snow and residual forage, but refine the FWH to include movement behavior en route that is spatially dynamic.


Assuntos
Cervos , Animais , Migração Animal , Estações do Ano , Herbivoria , Equidae
6.
Mov Ecol ; 12(1): 6, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243279

RESUMO

BACKGROUND: Information on reproduction of harvested species such as mule deer (Odocoileus hemionus) is vital for conservation and management. Furthermore, parturition in ungulates may be detected using patterns of movement logged by GPS transmitters. Several movement-based methods have been developed to detect parturition in ungulates including the Peterson method, behavioral change point analysis (BCPA), rolling minimum convex polygons (rMCP), individual-based method (IBM), and population-based method (PBM). Our objectives were to (1) test the accuracy and the precision of each previously described method and (2) develop an improved method optimized for mule deer that incorporated aspects of the other methods. METHODS: We determined parturition timing and status for female mule deer fitted with GPS collars and implanted with vaginal implant transmitters (VITs). We used movement patterns before and after parturition to set movement thresholds for each movement-based method. Following model training, we used location and birth date data from an external dataset to test the effectiveness of each movement-based method. Additionally, we developed a novel method for detecting parturition called the analysis of parturition indicators (API). We used two regression analyses to determine the accuracy and precision of estimates generated by each method. RESULTS: The six methods we employed varied in accuracy, with the API, rMCP, and BCPA being most accurate. Precision also varied among methods, with the API, rMCP, and PBM generating the most precise estimates of parturition dates. The API and the rMCP performed similarly and better overall than any of the other existing methods. CONCLUSIONS: We found that movement-based methods could be used to accurately and precisely detect parturition in mule deer. Further, we determined that the API and rMCP methods had the greatest overall success at detecting parturition in mule deer. The relative success of the API and rMCP may be attributed to the fact that both methods use home range size to detect parturition and are validated using known parturition dates of collared deer. We present the API as an efficient method of estimating birth status and timing of parturition of mule deer fitted with GPS transmitters, as well as affirm the effectiveness of a previously developed method, rMCP.

7.
Comp Immunol Microbiol Infect Dis ; 106: 102124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262257

RESUMO

A total of 500 fecal samples were collected from Equus animals in six different cities (Ardabil, Namin, Nir, Meshginshahr, Germi, and Khalkhal) of Ardabil Province, northwestern Iran, with 200 samples from horses, 200 from donkeys, and 100 from mules. Of the horse samples, 100 were from racing horses under special monitoring and care, while the remaining 100 were from non-racing horses, including those used for herding or in rural areas. All fecal samples were examined for the presence of Blastocystis sp. using PCR amplification of the SSU rRNA gene's barcode region after DNA extraction. The molecular prevalence of Blastocystis infection in Equus animals was 7.6% (38/500). Blastocystis was more common in horses [11.5% (23/200)] than in donkeys [5.5% (11/200)] and mules [4% (4/100)] (P > 0.05). Compared to racing horses [3% (3/100)], non-racing/rural horses [20% (20/100)] exhibited a substantially higher prevalence of Blastocystis (P < 0.05). The prevalence of Blastocystis in diarrheal samples and younger animals was remarkably higher than in formed samples and older animals, respectively (P < 0.05). No significant difference in Blastocystis infection prevalence was found between the genders of examined animals (P > 0.05). In Equus animals, 38 Blastocystis isolates included eight STs: ST10 [31.6% (12/38)], ST1 [21.1% (8/38)], ST2 [15.8% (6/38)], ST3 [10.5% (4/38)], ST4 [7.9% (3/38)], ST7 [5.2% (2/38)], ST14 [5.2% (2/38)], and ST6 [2.6% (1/38)]. These results suggest that Equus animals act as a proper reservoir for numerous Blastocystis STs, consequently playing a crucial part in the spread of this protozoan infection to humans, animals, and water reservoirs.


Assuntos
Infecções por Blastocystis , Blastocystis , Humanos , Animais , Cavalos , Feminino , Masculino , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/veterinária , Equidae/genética , Irã (Geográfico)/epidemiologia , Epidemiologia Molecular , Variação Genética , DNA de Protozoário/genética , Fezes , Prevalência , Filogenia
8.
J Equine Vet Sci ; 132: 104977, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048853

RESUMO

In horses and donkeys, age-related changes in hematological and biochemical parameters preclude the use of normal values of adults in the evaluation of foals. This study aimed to obtain data on hematological and biochemical parameters of mule foals from birth up to the second month of life and to assess age-related changes in order to determine if dedicated reference ranges are required in younger animals. Blood samples from seven healthy mule foals were obtained at birth before colostrum consumption, 24 h, 48 h of life, and then weekly until the second month of life. Results were expressed as mean and standard deviation or median, minimum, and maximum values if showing non-gaussian distribution. Kruskal-Walls and Dunn tests were used to verify the differences among sampling times. Significance was set at P < 0.05. Red blood cell count, packed cell volume and hemoglobin decreased from 24 h to one week of age. Mean corpuscular volume and mean corpuscular hemoglobin decreased over the first month. White blood cells increased from birth to seven days of life. Aspartate amino transferase increased while alkaline phosphatase decreased in the first week of life. Urea, creatinine, and lactate decreased, while glucose concentrations increased at 24 h. Ionized calcium and magnesium and total sodium and potassium showed no changes. In mule foals, several laboratory parameters may be the same or intermediate, lower or higher than in equine or donkey foals, but also compared to all other adult species. The preliminary results suggest that for mule foals, age influences hematological and biochemical parameters.


Assuntos
Equidae , Hematologia , Cavalos , Animais , Química Clínica
9.
One Health ; 17: 100619, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024277

RESUMO

Paslahepevirus balayani (HEV) is an important emerging zoonotic virus in Europe. Although domestic pigs and wild boar are the main reservoirs of this pathogen, susceptibility to this virus has been confirmed in a growing number of animal species, including equines. However, their role in the epidemiology of this virus remains poorly understood. Our aim was to assess HEV circulation and identify potential risk factors associated with exposure in equid species in different European countries. A total of 596 equines, including 496 horses, 63 donkeys and 37 mules/hinnies bred in four European countries (Spain, Italy, United Kingdom and Ireland) were sampled. Thirty-three animals (5.5%; 95%CI: 3.7-7.4) had anti-HEV antibodies. Seropositivity was found in 4.6% of horses, 11.1% of donkeys and 8.1% of mules/hinnies tested. By country, 6.3%, 5.4%, 5.0% and 4.0% of the equines sampled in Spain, Italy, United Kingdom and Ireland, respectively, were seropositive, respectively. Statistical analysis showed that "species" and "drinking water from ponds and streams" were potential risk factors associated with HEV seropositivity in equines in Europe. HEV RNA was not detected in any (0.0%; 95%CI: 0.0-1.8) of the 202 equines tested. Our results provide evidence of a low, spatially homogeneous and widespread viral circulation that is not equal across species in equid populations in the European countries analyzed and indicate that these species appear to play a limited role in the epidemiology of this virus. Further studies are required to elucidate the differences in seroprevalence between donkeys, mules/hinnies and horses and to determine the risk of zoonotic transmission of this pathogen from equid species.

10.
Front Vet Sci ; 10: 1214015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662986

RESUMO

About 112 million working equids are the source of income for 600 million people globally. Many equids are used for pulling loads (up to 15,000 kg per day) to transport goods. Most of them are associated with brick kilns, mining, and agriculture industries in developing countries. They may suffer from welfare issues such as overloading, being beaten, and being forced to work for long periods. These issues may occur due to a poor understanding of load-pulling equids. Understanding their capabilities and the elements that influence them is critical for efficient performance and welfare. The measurement of stride characteristics and gait kinematics can reveal loading adaptations and help identify loading limitations. It is known that both loading and fatigue change the locomotor patterns of load-pulling horses. Heart rate is a stress quantifying metric and an important representative of the speed of work and draught force. Heart rate variability is a regularly used statistic to quantify a physiological response to stresses, but it has never been used for load-pulling equids. Changes in blood lactate, nitrogen, oxygen, and carbon dioxide contents are reliable biochemical indicators of the effects of load pulling. Changes in plasma cortisol levels reflect the intensity of exercise and stress levels in horses while pulling a load. However, eye blink rate is a cheap, simple, and immediate indicator of acute equine stress, and we suggest it may be used to aid in load-pulling equine welfare assessment. However, further research is needed for a standardized and evidence-based draught load pulling capacity of working horses, mules, and donkeys.

11.
J Equine Vet Sci ; 130: 104917, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696367

RESUMO

The study aimed to assess Apgar scores and collect data on clinical, hemato-biochemical, and venous blood gas parameters in seven mules during their first 48 hours of life. Apgar scores, heart rate (HR), respiratory rate (RR), body temperature (BT), body weight (BW), time to achieve sternal recumbency, stand, nurse, and pass meconium were recorded. Blood samples were collected at birth (T0), 6 (T6), 12 (T12), 24 (T24), 48 (T48) hours of life. Data distribution was verified and differences in laboratory parameters over time assessed. One foal had an Apgar score of 6/8, thus excluded from the statistical analysis. Three foals had an Apgar score of 7/8, three had a score of 8/8. All foals showed suckling reflex within 20 minutes and raised the head within 1 minute; six foals reached sternal recumbency within 2 minutes. Times to stand and nurse were 38.7 ± 13.4 and 72.3 ± 30.5 minutes, respectively. Five foals passed meconium spontaneously in 416.3 ± 401.8 minutes. The mean HR, RR, and BT values were 92 ± 16.1 bpm, 50.2 ± 5.9 bpm, and 37.6 ± 0.3°C, respectively. Creatinine and lactate decreased from birth to 48 hours. Blood glucose increased from 12 hours. Mg increased from 12 to 24 hours. Compared to horses and donkeys, mules showed an intermediate BW, shorter time to stand and nurse, longer time to pass meconium, intermediate HR and lower RR. Compared to donkey mules showed lower BT. Other dissimilarities from the parental species were found in laboratory parameters. Our findings emphasize the need for reference ranges for a comprehensive evaluation of newborn mules.

12.
Animals (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570226

RESUMO

Few studies have established the normal radiographic anatomical development of the donkey foal and, to date, no data are available for mules. Our aim was thus to evaluate the radiographic development of the fore digit and carpal joint in the mule foal from 0 to 3 months of age. Ten forelimbs of five healthy full-term mule foals were included. Radiographs of the fore digit lateromedial and dorsopalmar and the carpus dorsopalmar were performed weekly for the first month of age, and bi-monthly during the following two months. Fore digit growth plate closure times, morphological, angular, and linear radiographic parameters, and also carpal cuboidal bone mineralization were evaluated. Growth plates were graded as open, closing, and closed. Carpal bone appearance was graded as mature, slightly immature, or immature. Growth plate closure times showed the following: middle phalangeal distal physis (DP) closed at birth, and proximal physis (PP) started to close at around two months; first phalanx DP closed at seven days, and PP started to close at three months; and third metacarpal bone DP started to close at two months. Carpal bones were immature at birth. Distal phalanx (PD) was triangular at birth, palmar processes had developed by one month, and proximal sesamoid bones were trapezoidal by three months. The hoof wall, PD dorsal wall, and palmar angles values changed in parallel, and hoof capsule thickness increased. No PD remodeling evidence within the hoof capsule or variations in the hoof axis with growth were found. We identified a baseline for the interpretation of forelimb radiological features in mule foals. The specific features found were intermediate between those found in horses and donkeys.

13.
Ecol Evol ; 13(6): e10224, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37396026

RESUMO

Increasing resource extraction and human activity are reshaping species' spatial distributions in human-altered landscape and consequently shaping the dynamics of interspecific interactions, such as between predators and prey. To evaluate the effects of industrial features and human activity on the occurrence of wolves (Canis lupus), we used wildlife detection data collected in 2014 from an array of 122 remote wildlife camera traps in Alberta's Rocky Mountains and foothills near Hinton, Canada. Using generalized linear models, we compared the occurrence frequency of wolves at camera sites to natural land cover, industrial disturbance (forestry and oil/gas exploration), human activity (motorized and non-motorized), and prey availability (moose, Alces alces; elk, Cervus elaphus; mule deer, Odocoileus hemionus; and white-tailed deer, Odocoileus virginianus). Industrial block features (well sites and cutblocks) and prey (elk or mule deer) availability interacted to influence wolf occurrence, but models including motorized and non-motorized human activity were not strongly supported. Wolves occurred infrequently at sites with high densities of well sites and cutblocks, except when elk or mule deer were frequently detected. Our results suggest that wolves risk using industrial block features when prey occur frequently to increase predation opportunities, but otherwise avoid them due to risk of human encounters. Effective management of wolves in anthropogenically altered landscapes thus requires the simultaneous consideration of industrial block features and populations of elk and mule deer.

14.
Ecol Evol ; 13(7): e10282, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37484933

RESUMO

Animal movement is the mechanism connecting landscapes to fitness, and understanding variation in seasonal animal movements has benefited from the analysis and categorization of animal displacement. However, seasonal movement patterns can defy classification when movements are highly variable. Hidden Markov movement models (HMMs) are a class of latent-state models well-suited to modeling movement data. Here, we used HMMs to assess seasonal patterns of variation in the movement of pronghorn (Antilocapra americana), a species known for variable seasonal movements that challenge analytical approaches, while using a population of mule deer (Odocoileus hemionus), for whom seasonal movements are well-documented, as a comparison. We used population-level HMMs in a Bayesian framework to estimate a seasonal trend in the daily probability of transitioning between a short-distance local movement state and a long-distance movement state. The estimated seasonal patterns of movements in mule deer closely aligned with prior work based on indices of animal displacement: a short period of long-distance movements in the fall season and again in the spring, consistent with migrations to and from seasonal ranges. We found seasonal movement patterns for pronghorn were more variable, as a period of long-distance movements in the fall was followed by a winter period in which pronghorn were much more likely to further initiate and remain in a long-distance movement pattern compared with the movement patterns of mule deer. Overall, pronghorn were simply more likely to be in a long-distance movement pattern throughout the year. Hidden Markov movement models provide inference on seasonal movements similar to other methods, while providing a robust framework to understand movement patterns on shorter timescales and for more challenging movement patterns. Hidden Markov movement models can allow a rigorous assessment of the drivers of changes in movement patterns such as extreme weather events and land development, important for management and conservation.

15.
Proc Natl Acad Sci U S A ; 120(31): e2305298120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490540

RESUMO

Nearly all eukaryotes carry DNA transposons of the Robertson's Mutator (Mu) superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of MuDR transposase genes and TIRs. To address the extent of this relationship and its impact, we compared separate phylogenies of TIRs and MuDR gene sequences from Mu elements in the maize genome. Five major clades were identified. As expected, most Mu elements were bound by highly similar TIRs from the same clade (homomorphic type). However, a subset of elements contained dissimilar TIRs derived from divergent clades. These "heteromorphs" typically occurred in multiple copies indicating active transposition in the genome. In addition, analysis of internal sequences showed that exchanges between elements having divergent TIRs produced new mudra and mudrb gene combinations. In several instances, TIR homomorphs had been regenerated within a heteromorph clade with retention of distinctive internal MuDR sequence combinations. Results reveal that recombination between divergent clades facilitates independent evolution of transposase (mudra), transposase-binding targets (TIRs), and capacity for insertion (mudrb) of active Mu elements. This mechanism would be enhanced by the preference of Mu insertions for recombination-rich regions near the 5' ends of genes. We suggest that cycles of recombination give rise to alternating homo- and heteromorph forms that enhance the diversity on which selection for Mu fitness can operate.


Assuntos
Transposases , Zea mays , Zea mays/genética , Transposases/genética , Elementos de DNA Transponíveis/genética , Sequências Repetidas Terminais/genética , Recombinação Genética
16.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040346

RESUMO

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cavalos , Animais , Reprogramação Celular , Equidae , Células Cultivadas , Diferenciação Celular/genética , Fibroblastos , Fator 3 de Transcrição de Octâmero/genética
17.
Ecol Evol ; 13(4): e9976, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091564

RESUMO

Wildlife population dynamics are modulated by abiotic and biotic factors, typically climate, resource availability, density-dependent effects, and predator-prey interactions. Understanding whether and how human-caused disturbances shape these ecological processes is helpful for the conservation and management of wildlife and their habitats within increasingly human-dominated landscapes. However, many jurisdictions lack either long-term longitudinal data on wildlife populations or measures of the interplay between human-mediated disturbance, climate, and predator density. Here, we use a 50-year time series (1962-2012) on mule deer (Odocoileus hemionus) demographics, seasonal weather, predator density, and oil and gas development patterns from the North Dakota Badlands, USA, to investigate long-term effects of landscape-level disturbance on mule deer fawn fall recruitment, which has declined precipitously over the last number of decades. Mule deer fawn fall recruitment in this study represents the number of fawns per female (fawn:female ratio) that survive through the summer to October. We used this fawn recruitment index to evaluate the composite effects of interannual extreme weather conditions, energy development, and predator density. We found that density-dependent effects and harsh seasonal weather were the main drivers of fawn fall recruitment in the North Dakota Badlands. These effects were further shaped by the interaction between harsh seasonal weather and predator density (i.e., lower fawn fall recruitment when harsh weather was combined with higher predator density). Additionally, we found that fawn fall recruitment was modulated by interactions between seasonal weather and energy development (i.e., lower fawn fall recruitment when harsh weather was combined with higher density of active oil and gas wells). Interestingly, we found that the combined effect of predator density and energy development was not interactive but rather additive. Our analysis demonstrates how energy development may modulate fluctuations in mule deer fawn fall recruitment concurrent with biotic (density-dependency, habitat, predation, woody vegetation encroachment) and abiotic (harsh seasonal weather) drivers. Density-dependent patterns emerge, presumably due to limited quality habitat, being the primary factor influencing fall fawn recruitment in mule deer. Secondarily, stochastic weather events periodically cause dramatic declines in recruitment. And finally, the additive effects of human disturbance and predation can induce fluctuations in fawn fall recruitment. Here we make the case for using long-term datasets for setting long-term wildlife management goals that decision makers and the public can understand and support.

18.
Br Poult Sci ; 64(2): 143-156, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36880206

RESUMO

1. In this study, transcriptomics and metabolomics were used to analyse changes in gene expression and metabolites in the liver of 70-d-old mule ducks after 10 and 20 d of continuous overfeeding.2. In the free-feeding group, 995 differentially expressed genes and 51 metabolites (VIP >1, P < 0.05) were detected in the early stage, and 3,448 differentially expressed genes and 55 metabolites (VIP >1, P < 0.05) were detected in the later stage. There were 775 differentially expressed genes and 47 metabolites (VIP >1, P < 0.05) detected in the early stage of the overfeeding group, and 6,719 differentially expressed genes and 57 metabolites (VIP >1, P < 0.05) detected in the later stage.3. There were no significant differences between the early stage in the overfeeding and free-feeding groups at the transcriptional and metabolic levels. Oleic acid and palmitic acid synthesis increased in the early stage of the overfeeding and free-feeding groups, however, these were inhibited in the late stage. Fatty acid oxidation and ß-oxidation pathways were inhibited and insulin resistance was enhanced significantly in the late overfeeding stage.4. In the early stage, the digestion and absorption of fat in the overfeeding and free-feeding groups were enhanced. In the later stage, the ability to store triglyceride in the overfeeding group was greater than in the free-feeding group.5. The expression of nuclear factor κB (NFκB), a key inflammatory factor, was inhibited in the late stage of overfeeding, while arachidonic acid (AA), a metabolite with anti-inflammatory properties, increased in the late stage of overfeeding to inhibit the inflammatory effects caused by excessive lipid accumulation. These results add to the understanding of the mechanism of production of fatty liver in mule ducks and facilitate the development of treatments for non-alcoholic fatty liver disease.


Assuntos
Patos , Metabolismo dos Lipídeos , Animais , Metabolismo dos Lipídeos/genética , Patos/genética , Patos/metabolismo , Transcriptoma , Galinhas/genética , Fígado/metabolismo
19.
Animals (Basel) ; 13(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830369

RESUMO

Horses and donkeys differ phenotypically and karyotypically, although they can interbreed freely. Eight Standardbred mares and nine Amiata donkey jennies were included in the study. Semen was collected from two horses and two donkey stallions of proven fertility. A first pregnancy diagnosis was performed on day 10 after ovulation and repeated every day until embryo detection or until day 16. Irrespectively of the sire species, pregnancy rates in horse females (20/30, 66.7%) were significantly higher than in donkey females (19/70, 27.1%) (p < 0.05), while horse and donkey males did not affect pregnancy rates. Comparing overall intraspecific and interspecific AI, pregnancy rates were 25/37 (67.6%) and 14/63 (22.2%), respectively (p = 0.0001). The lowest pregnancy rate was obtained when inseminating jennies with horse stallion semen (8/49, 16.3%). No statistical differences were found when comparing embryo diameters, day at first pregnancy diagnosis, or in vitro embryo morphological quality among groups. In this study, much poorer results were obtained with jennies than with mares. Interspecific AI resulted in lower pregnancy rates than intraspecific Al, and AI to produce hinny hybrids resulted in the lowest pregnancy rate. Further studies are required to better understand the mechanism involved in such different outcomes in relation to intra- and interspecific breeding in domestic equids.

20.
J Anim Ecol ; 92(3): 677-689, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598334

RESUMO

Fences have recently been recognized as one of the most prominent linear infrastructures on earth. As animals traverse fenced landscapes, they adjust movement behaviours to optimize resource access while minimizing energetic costs of coping with fences. Examining individual responses is key for connecting localized fence effects with population dynamics. We investigated the multi-scale effects of fencing on animal movements, space use and survival of 61 pronghorn and 96 mule deer on a gradient of fence density in Wyoming, USA. Taking advantage of the recently developed Barrier Behaviour Analysis, we classified individual movement responses upon encountering fences (i.e. barrier behaviours). We adopted the reaction norm framework to jointly quantify individual plasticity and behavioural types of barrier behaviours, as well as behaviour syndromes between barrier behaviours and animal space use. We also assessed whether barrier behaviours affect individual survival. Our results highlighted a high-level individual plasticity encompassing differences in the degree and direction of barrier behaviours for both pronghorn and mule deer. Additionally, these individual differences were greater at higher fence densities. For mule deer, fence density determined the correlation between barrier behaviours and space use and was negatively associated with individual survival. However, these relationships were not statistically significant for pronghorn. By integrating approaches from movement ecology and behavioural ecology with the emerging field of fence ecology, this study provides new evidence that an extraordinarily widespread linear infrastructure uniquely impacts animals at the individual level. Managing landscape for lower fence densities may help prevent irreversible behavioural shifts for wide-ranging animals in fenced landscapes.


Assuntos
Cervos , Individualidade , Animais , Ecologia , Dinâmica Populacional , Equidae , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...